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Abstract

Huber's (1973) proof of asymptotic normality of robust regression
estimates is modified to include the estimates used in practice, which

have unknown scale and only piecewise smooth defining functions y.
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Introduction

We consider the gencral linear model

(1.1) b ik | i 21/00 (1=1,...40),

where

o)
0)
1.2) 1. = & s Bg
1 j=1 13 "3

llere the B§O) are unknown parameters, the Cij are known constants, the z; arc

independent and identically distributed with common distribution function F

(symmetric about zero), and % is a constant to be chosen later. Huber (1973)

proposed estimating B by solving the system of cquations

(1.3) I; Wl - (g5 =0 (G = Lieeryp)

(1.4) Zi{wz(o(yi * (8] - &)

where

t:(f) = i v E
i () jgl €3 5 ~

" =R 2
L= Ey b £2) o

(the expectation being taken under the standard normal distribution) and y is a

monotone nondecreasing function. lLet C = {Cij}’ r = C(C'r C)'1 C'r be the

projection matrix, and ¢ be the maximm diagonal element of T.

Huber (1973) considers o fixed and known (o = 1) so that one only need

solve (1.3). !lle proves that if cpz + 0 as n » » (which implies ps/n + 0)

and if ¥ is bounded with two continuwous bounded derivatives, then all estimates

of the form & = P

=1 aj ﬁj (Y.j aJ? = 1) are asymptotoically normal. It is



i T

routine to extend his results to the system (1.3), (1.4) (see below). The
smoothness conditions on y are not satisfied for three of the most commonly

used functions, namely

Huber's function

v(x) = x |x] < ¢

= ¢ sign(x) |x|] > ¢

Hampel's function

p(x) = -p(-x) = x 0 <x<a
=a a<x<b
= a(gg.’.}) b<x<c
=0 X>c
Andrew's function
p(x) = -p(-x) = sine(x/c) 0 <x <
=0 X > m .

In this note we weaken Huber's conditions to include the common y-functions,
at the cost of slightly strengthened conditions on the rate of growth of p,
the dimension of the problem. The results have been applied by Carroll and
Ruppert (1979) to the probelm of testing for heteroscedasticity (Bickel (1978)).
As in Huber's proof, we assume C'C = I. Because of the invariance of the

problem, we can take 3}0) =0 (G =1,...,p) and 0, = 1, primarily to simplify

notation. ACCESSION for
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2. Notation, Assumptions and Main Results

Let a be an arbitrary (p x 1) vector for which & a? = ||a] |2 = 1. Define

2 e ; :
S; ® Z?=l €ij 8 Note that ||t (B)||" = [|6]|". Define for j = 1,...,p,

n
¢;(8,0) = - 121 oty - t(8)) c;/B' ()

n
wj(B:O) = Bj = iZI ¢(Yi) Cij/hW'(Yl),

while

o n
¢p+l(ﬂ’0) = gt ié]_ {4’2(0()’1 & tl(B))) e 5 li)’l w(yl)w'(yl)

'!i - 2 (]
hpe1 800) = 0 (o)) + 1 W) - 2 By vov ) -

Our ecstimates are solutions to ¢J. (B,0) =0 (j = 1,...,p*1), and we hope to
approxinate (8,6) by (8,0) which solves ‘PJ. (o) =0 (5 =1,...,p*1).

We make the following assumptions.

.1) ¢ is odd, bounded, and constant outside a finite interval.

' 1s Lipschitz of order one and has two continuous bounded derivatives

except at a finite number of points, which we take without loss as +c.
€2.: F is symmetric about zero.
(2. F is Lipschitz in neighborhoods of :c.
(2. Ey'(ry) #0, Byp wly) v'(y)) # 0.

Theorem 1. If (2.1) - (2.5) hold and, in addition, there is a sequence a ° 0

such that




2
(2.6) (ep/u;\) +0, (ema) ~0,

then there is a sequence of solutions to (1.3) - (1.4) such that
o~ l ~
(2.7) |1 (B, (mp)? (6 - 1))]|] = 0, (P).

If in addition

(2.8) (rpz/ﬂﬁ) + 0, (enpan) +0,
then
(2.9) B ) @G- D) - @ op)* @ - 1)) So.

Thus, (2.1) - (2.5) and (2.8) imply that all csimtates of the form

a = ZIj)=1 a éj (] |0t||2 = 1) are asymptotically normal.

Remark: The result (2.7) is the starting point in constructing robust tests
for heteroscedasticity (Bickel (1978), Carroll and Ruppert (1979)); it implies |
the crucial assumption T of Bickel's Theorem 3.1. For balanced designs | i
(e = p/n), assumption (2.6) is satisfied by choosing a = p- (1+v) for small

y » 0, which then requires 1,4*3\(/" + 0, as compared to luber's condition pz/n + 0

when { has two derivatives.

3. Proofs

Proposition 1. Suppose that (2.1) - (2.5) hold, that ¢ has two bounded contin-

uous derivatives, and that ¢p » 0. Then on the sct

! 2
[, (pn)? (o - D)]|" < Kp,

the following hold:




(3.1) 98,0 - ¥(8,0) || = 0, (DD ,
(3.2) [1oB,0) = (8, ()* (o - ] = 0, (0% + (D)

Proof of Proposition 1. By a Taylor series expansion,

n
(3.3) 521 205 (8,0) - V;(B,0) + (0= 1) T spy; ¥ 0)/E ¥ Op)

i=1

n
o Lo (B0 0y) - B /E W)

Al

n
lo ¥ ll Iigl si ti(B)Yi W'((l + nZi)Yi)/E W'(Yl)l

| A

2 n 2 " ]
1=

On the set ||8] |2 <Kp, |o - 1] <, |la]| = 1, !uber shows that the second
term on the r.h.s. of (3.3) is 0(c? [[8]|®). Since y' = 0 outside a finite

set and [n,il > Y4, the first term on the r.h.s. of (3.3) is bounded by
2ik & !
Mle - 1 (2 s (2 ti(B))‘ = 0(lI8}] Jo - 1)) .
Thus,
1 2
AL = 0te™ 18112+ Jo - 1] |18]D) .

We next consider l\n, in particular its last two terms. Since [ sf =1 and
Ey, vy =0,

v
(3.4) (o - 1) ill Sp ¥y ¥ O/E v (yy) = 0,(fo - 1)),

[luber shows that




n 1
(.9 1 sH®@ o - B e/E ey = 06" 1.
1=

Thus, uniformly on the set ||B||2 <Kp, lo- 1} < Kn'k. [la]] = 1 we have
from (3.3) - (3.5)

(3.6) |j§1 a;(9;(8,0) - ¥;(8,0) [ = 0, (cp + pn'7) .

Another Taylor series expansion shows that

(3.7) Bl = I8, (8:0) - ¥pe1 (Br0) * Gy + Cppl

= o i 2
<M{o- 1] ||8]] +pn ten? o - 1%,

where

=L n
2 Eyp blyp) ' IC,; =2n (0 - 1) igl Oy wlyg) v'Ory) - Eyp vy o' (p))

and

-l n
ZEy vy vy, =20n " 121 ti(8) wlyy) v'yy) -

1
Since C | = op(]u - 1) and Coa op((p/n) %), we obtain

1
- = 7
|'bp+1((’>p”) wl’+1(B’0) ‘ OD(P“ |

1. L
Since (r,pz)’2 Z (psln)'|i > pn ", we thus obtain (3.1). Equation (3.2) follows

from (3.20) of Huber (1973).

Proof of Theorem 1.

The proof of Proposition 1 makes it clear that we need to
obtain bounds for lAn] and |Bn| uniformly on the set ||8|| < Kp,

lo - 1| _<_l(n"Ii and ||a|| = 1.

Rewrite




n
Ev'(yy) IAl = |'Z1 (i, 8,0) |
1=

n
izl s;Wloly; - £,(8))) - v(y;))
* o'~ 1) Si Yi w'()'i)
Sos; (@0 () - Ev'(yy))
Let I be the indicator fumction and let a > 0, n‘i a, = Then ]

n
'Anl = 121 “(leQO) I(‘C * an i )’1 _<_ c - an)
+ I(yi b an) + I(yi e an)

+I(-c-an<yi<-c+an)+I(c-an<yi<c+an)

='A

nl * An?. * AnS * At AnS"

n4

VO ROtARO IBIR aea L Ul T
n -
Anl = igl H(i,B,0) I(-c +‘an <y;<c- an)

x {I(-¢c < di <cg) + I(‘dil )y = Al'(l%) + Arg%) .

By Proposition 1, |AS)| = o(c‘ip). Since y is Lipschitz and constant outside
a finite interval,
WD e T fiio-dle it n <y, <c-0 4|58
B - i i n i n i i
llowever, since |o - 1] < Kn" and n* a -+ 0,
(2) oy
Ay | <Me igl to = 1] + |, (B) |} L{|t;(B)] > a /2} .

Now

-y 2
(3.8) i;él (e, ®)] > a /2} < dp/a




n
(3'9) 121 |tl(8)l I{Itl(B)l > an/Z} _<_ 4[‘)/311 ’

so that (3.8) and (3.9) imply
1.
|Al£§)| < M e*{]o - 1] p/unz +p/a} .
However, |[o - 1|/an < K(nanz)"J so that
1. =1
(3.10) |An1| = 0(e*p/ay (1+ (nanz) 5.

The same bound (3.10) holds for |An'2| and |A 3|+ Noting once again that y is
Lipschitz and constant outside a finite interval,
n
sl < L Is5l Uo = 11+ 5B Ty, - ef <ap)

1 1. 1.
2 1 ‘2 2
£0Me” e~ TG C BTG 0T,

where

n

(3.11) g o _z

iy ~cj=a} .
15y i n

From Lemma 1 of Carroll (1978), provided na > log n,
Gn = Op(nan) .
This gives
1
. 2
(3.12) |Ans| Op((c npan) F

The bound (3.12) also holds for |A ,|. Thus,

(3.13) A ] = 0 (e pray 1+ (a7 + (e mpa)').

The same bound holds for B, I+ ‘Thus,
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(3.14) [[o(B,0) = ¥(B,0) || = 0, p(1+ (D)) /a ¢ (0 onpa )
= 0p(r(p,m)) .

Equation (3.14) is the generalization of Huber's (3.18). As he shows, for

sufficiently large K, on the set ||g] |2 <Kp, lo-1] < Kn'!i’

(3.15) 116(8,0) - (8, (p)* (o - )| < r(p,n) + 5(kp) ? .
Thus, if
(3.16) r(p,n)/p* + 0 ,

Brouwer's fixed point theorem enables us to conclude that ¢ has a zero inside

the ball || (8, (np)* (o - 1))|| < Kp. ELquation (3.16) is true if (2.6) is

truc. The rest of the proof parallels that of Huber. 8]
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